Департамент образования и науки Тюменской области Департамент по образованию города Тобольска Муниципальное автономное общеобразовательное учреждение «Средняя общеобразовательная школа №13 имени Героя Советского Союза Г.Н. Кошкарова»

РАССМОТРЕНО

на заседании кафедры учителей естественно математического цикла Протокол № 1 от 30. 08.2022г
/Эйхлер Н.Н../

СОГЛАСОВАНО

на заседании методического совета Продокол № 1 от 30. 08.2022г /Тренина М.А./

УТВЕРЖДЕНО
приказом школы
СОШ №13.08.2022г

РАБОЧАЯ ПРОГРАММА

учебного предмета «Физика»

для 11 класса (базового) среднего общего образования на 2022-2023 учебный год

Тобольск 2022

1. Требования к уровню подготовки выпускников

В результате изучения физики на базовом уровне ученик должен Знать/понимать:

- смысл понятий: физическое явление, гипотеза, закон, теория, вещество, взаимодействие, электромагнитное поле, волна, фотон, атом, атомное ядро, ионизирующие излучения, планета, звезда, галактика, Вселенная.
- смысл физических величин: скорость, ускорение, масса, сила, импульс, работа, механическая энергия, внутренняя энергия, абсолютная температура, средняя кинетическая энергия частиц вещества, количество теплоты, элементарный электрический заряд.
- смысл физических законов классической механики, всемирного тяготения, сохранения энергии, импульса и электрического заряда, термодинамики, электромагнитной индукции, фотоэффекта.
 - вклад российских и зарубежных ученых, оказавших наибольшее влияние на развитие физики.

Уметь:

- описывать и объяснять физические явления и свойства тел: движение небесных тел и искусственных спутников Земли; свойства газов, жидкостей и твердых тел; электромагнитную индукцию, распространение электромагнитных волн; волновые свойства света; излучение и поглощение света атомом; фотоэффект.
- отличать гипотезы от научных теорий; делать выводы на основе экспериментальных данных; приводить примеры, показывающие, что: наблюдения и эксперимент являются основой для выдвижения гипотез и теорий, позволяют проверить истинность теоретических выводов; физическая теория дает возможность объяснять известные явления природы и научные факты, предсказывать еще неизвестные явления.
- приводить примеры практического использования физических знаний: законов механики, термодинамики и электродинамики в энергетике; различных видов электромагнитных излучений для развития радио и телекоммуникаций, квантовой физики в создании ядерной энергетики, лазеров.
- воспринимать и на основе полученных знаний самостоятельно оценивать информацию, содержащуюся в сообщениях СМИ, Интернете, научно-популярных статьях.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

- обеспечения безопасности жизнедеятельности в процессе использования транспортных средств, бытовых электроприборов, средств радио- и телекоммуникационной связи;
 - оценки влияния на организм человека и другие организмы загрязнения окружающей среды;
 - рационального природопользования и защиты окружающей среды.

2. Содержание тем учебного курса 11 класс

Основы электродинамики (продолжение).

Магнитное поле (4 часов).

Взаимодействие токов. Стационарное магнитное поле. Вектор магнитной индукции. Линии магнитного поля. Модуль вектора магнитной индукции. Сила Ампера Сила Лоренца.

Демонстрации:

- 1. Взаимодействие параллельных токов.
- 2. Действие магнитного поля на ток.
- 3. Устройство и действие амперметра и вольтметра.
- 4. Устройство и действие громкоговорителя.
- 5. Отклонение электронного лучка магнитным полем.

Лабораторная работа№1 «Наблюдение действия магнитного поля на ток»

Знать: понятия: магнитное поле тока, индукция магнитного поля.

Практическое применение: электроизмерительные приборы магнитоэлектрической системы.

Уметь: решать задачи на расчет характеристик движущегося заряда или проводника с током в магнитном поле, определять направление и величину сил Лоренца и Ампера,

Электромагнитная индукция (7 часов)

Явление электромагнитной индукции. Магнитный поток. Закон электромагнитной индукции. Правило Ленца. Самоиндукция. Индуктивность. Энергия магнитного поля. Электромагнитное поле.

Лабораторная работа №2: Изучение электромагнитной индукции.

- 6. Электромагнитная индукция.
- 7. Правило Ленца.
- 8. Зависимость ЭДС индукции от скорости изменения магнитного потока.

- 9. Самоиндукция.
- 10. Зависимость ЭДС самоиндукции от скорости изменения силы цели и от индуктив-ности проводника.

Знать: понятия: электромагнитная индукция; закон электромагнитной индукции; правило Ленца, самоиндукция; индуктивность, электромагнитное поле.

Уметь: объяснять явление электромагнитной индукции и самоиндукции, решать задачи на применение закона электромагнитной индукции, самоиндукции.

Колебания и волны (16 часов)

Свободные и вынужденные электромагнитные колебания. Колебательный контур. Превращение энергии при электромагнитных колебаниях. Аналогия между механическими и электромагнитными колебаниями. Переменный электрический ток. Генерирование электрической энергии. Трансформаторы. Производство, передача и использование электрической энергии. Волна. Свойства волн и основные характеристики. Опыты Герца. Изобретение радио А. С. Поповым. Принципы радиосвязи.

Лабораторная работа№3 «Определение ускорения свободного падения при помощи нитяного маятника»

- 11. Свободные электромагнитные колебания низкой частоты в колебательном контуре.
- 12. Зависимость частоты свободных электромагнитных колебаний от электроемкости и индуктивности контура.
- 13. Незатухающие электромагнитные колебания в генераторе на транзисторе.
- 14. Получение переменного тока при вращении витка в магнитном поле.
- 15. Устройство и принцип действия генератора переменного тока (на модели).
- 16. Осциллограммы переменною тока
- 17. Устройство и принцип действия трансформатора
- 18. Передача электрической энергии на расстояние с мощью понижающего и повышающего трансформатора.
- 19. Электрический резонанс.
- 20. Излучение и прием электромагнитных волн.
- 21. Отражение электромагнитных волн.
- 22. Преломление электромагнитных волн.
- 23. Интерференция и дифракция электромагнитных волн.

- 24. Поляризация электромагнитных волн.
- 25. Модуляция и детектирование высокочастотных электромагнитных колебаний.

<u>Знать</u>: понятия: свободные и вынужденные колебания; колебательный контур; переменный ток; резонанс, электромагнитная волна, свойства электромагнитных волн.

Практическое применение: генератор переменного тока, схема радиотелефонной связи, телевидение.

<u>Уметь</u>: Измерять силу тока и напряжение в цепях переменного тока. Использовать трансформатор для преобразования токов и напряжений. Определять неизвестный параметр колебательного контура, если известны значение другого его параметра и частота свободных колебаний; рассчитывать частоту свободных колебаний в колебательном контуре с известными параметрами. Решать задачи на

применение формул:
$$T=2\pi\sqrt{LC}$$
 , $\omega=\frac{1}{\sqrt{LC}}$, $I=\frac{I_0}{\sqrt{2}}$, $U=\frac{U_0}{\sqrt{2}}$, $k=\frac{U_1}{U_2N_2I_1}=\frac{I_2}{U_2N_2I_1}$. Объяснять распространение электромагнитных волн.

Оптика (13 часов)

Световые волны. (7часов)

Введение в оптику. Развитие взглядов на природу света. Скорость света. Основные законы геометрической оптики.

Лабораторная работа№4 «Экспериментальное измерение показателя преломления стекла»

Лабораторная работа№5 «Экспериментальное определение оптической силы и фокусного расстояния собирающей линзы»

Лабораторная работа №6: Измерение длины световой волны.

Лабораторная работа№7 «Наблюдение интерференции, дифракции и поляризации света»

- 26. Законы преломления снега.
- 27. Полное отражение.
- 28. Световод.
- 29. Получение интерференционных полос.

- 30. Дифракция света на тонкой нити.
- 31. Дифракция света на узкой щели.
- 32. Разложение света в спектр с помощью дифракционной решетки.
- 33. Поляризация света поляроидами.
- 34. Применение поляроидов для изучения механических напряжений в деталях конструкций.

Знать: понятия: интерференция, дифракция и дисперсия света.

Законы отражения и преломления света,

Практическое применение: полного отражения, интерференции, дифракции и поляризации света.

<u>Уметь</u>: измерять длину световой волны, решать задачи на применение формул, связывающих длину волны с частотой и скоростью, период колебаний с циклической частотой; на применение закона преломления света.

Элементы теории относительности. (3 часа)

Элементы специальной теории относительности. Постулаты Эйнштейна. Элементы релятивистской динамики.

Знать: понятия: принцип постоянства скорости света в вакууме, связь массы и энергии.

Уметь: определять границы применения законов классической и релятивистской механики.

Излучения и спектры. (3 часа)

Излучение и спектры. Шкала электромагнитных излучений

Лабораторной работы №8 «Наблюдение сплошного и линейчатого спектров»

- 35. Невидимые излучения в спектре нагретого тела.
- 36. Свойства инфракрасного излучения.
- 37. Свойства ультрафиолетового излучения.
- 38. Шкала электромагнитных излучений (таблица).
- 39. Зависимость плотности потока излучения от расстояния до точечного источника.

Знать: практическое применение: примеры практического применения электромагнитных волн инфракрасного, видимого, ультрафиолетового и рентгеновского диапазонов частот.

Уметь: объяснять свойства различных видов электромагнитного излучения в зависимости от его длины волны и частоты.

Квантовая физика (13 часов)

Законы фотоэффекта. Гипотеза Планка о квантах. Фотоэффект. Фотоны. Гипотеза де Бройля. Квантовые свойства света: световое давление, химическое действие света. Квантовые постулаты Бора. Излучение и поглощение света атомом. Лазеры. Радиоактивность. Энергия связи атомных ядер. Цепная ядерная реакция. Атомная электростанция. Применение физики ядра на практике. Биологическое действие радиоактивных излучений. Элементарные частицы.

Лабораторной работы №9 «Изучение треков заряженных частиц по готовым фотографиям»

Демонстрации:

- 40. Фотоэлектрический эффект на установке с цинковой платиной.
- 41. Законы внешнего фотоэффекта.
- 42. Устройство и действие полупроводникового и вакуумного фотоэлементов.
- 43. Устройство и действие фотореле на фотоэлементе.
- 44. Модель опыта Резерфорда.
- 45. Наблюдение треков в камере Вильсона.
- 46. Устройство и действие счетчика ионизирующих частиц.

<u>Знать</u>: Понятия: фотоэффект; корпускулярно-волновой дуализм; ядерная модель атома; ядерные реакции, энергия связи; радиоактивный распад; цепная реакция деления; термоядерная реакция; элементарная частица, атомное ядро.

Законы фотоэффекта: постулаты Борщ закон радиоактивного распада.

Практическое применение: устройство и принцип действия фотоэлемента; примеры технического - использования фотоэлементов; принцип спектрального анализа; примеры практических применений спектрального анализа; устройство и принцип действия ядерного реактора.

<u>Уметь</u>: Решать задачи на применение формул, связывающих энергию и импульс фотона с частотой соответствующей световой волны. Вычислять красную границу фотоэффекта и энергию фотозлектронов на основе уравнения Эйнштейна. Определять продукты ядерных реакций на основе законов

сохранения электрического заряда и массового числа.

Рассчитывать энергетический выход ядерной реакции. Определять знак заряда или направление движения элементарных частиц по их трекам на фотографиях.

Строение Вселенной (9 часов)

Основные элементы физической картины мира. Небесная сфера. Звездное небо. Законы Кеплера. Строение Солнечной системы. Современное представление о происхождении и эволюции солнца и звезд. Система Земля — Луна. Общие сведения о Солнце, его источники энергии и внутреннее строение. Физическая природа звезд. Галактика. Происхождение и эволюция галактик. Красное смещение. Жизнь и разум во Вселенной

Демонстрации:

- 47. Модель солнечной системы.
- 48. Теллурий.
- 49. Подвижная карта звездного неба.

Знать: понятия: планета, звезда, Солнечная система, галактика, Вселенная.

Практическое применение законов физики для определения характеристик планет и звезд.

<u>Уметь</u>: объяснять строение солнечной системы, галактик, Солнца и звезд. Применять знание законов физики для объяснения процессов происходящих во вселенной. Пользоваться подвижной картой звездного неба.

3. Тематическое планирование учебного материала

по физике 11 класс.

Количество часов в год -68

Количество часов в неделю -2

NG.	Tarra remana	количество	
No	Тема урока	часов	дата
	ЭЛЕКТРОДИНАМИКА (продолжение)	11	
1	Магнитное поле	4	
1	Взаимодействие токов. Стационарное магнитное поле	1	
	Вектор магнитной индукции. Линии магнитного поля	1	
	Модуль вектора магнитной индукции. Сила Ампера Сила Лоренца	1	
4	Лабораторная работа№1 «Наблюдение действия магнитного поля на ток»	1	
	Электромагнитная индукция	7	
5	Явление электромагнитной индукции. Магнитный поток. Закон электромагнитной индукции. Правило Ленца.	1	
6	Решение задач на правило Ленца и закон ЭМИ	1	
7	Лабораторная работа№2 «Изучение явления электромагнитной индукции »	1	
8	Самоиндукция. Индуктивность.	1	
9	Энергия магнитного поля. Электромагнитное поле.	1	
10	Решение задач по темам «Магнитное поле» и «Электромагнитная индукция»,	1	
11	Контрольная работа№1 «Электродинамика»,коррекция	1	
	КОЛЕБАНИЯ И ВОЛНЫ	16	
	Механические колебания	1	
12	Лабораторная работа№3 «Определение ускорения свободного падения при помощи нитяного маятника»	1	
	Электромагнитные колебания	4	
13	Свободные и вынужденные электромагнитные колебания. Колебательный контур. Превращение энергии при электромагнитных колебаниях.	1	
14	Аналогия между механическими и электромагнитными колебаниями	1	
15	Решение задач на характеристики электромагнитных свободных колебаний	1	
	Переменный электрический ток. Генерирование электрической энергии.	1	
	Производство, передача и использование электрической энергии	5	
17	Трансформаторы	1	

18-19	Производство, передача и использование электрической энергии	2	
	Решение задач по темам «Электромагнитные колебания»	1	
21	Контрольная работа№2 «Электромагнитные колебания», коррекция	1	
	Электромагнитные волны	6	
22	Волна. Свойства волн и основные характеристики	1	
23	Опыты Герца	1	
24-25	Изобретение радио А. С. Поповым. Принципы радиосвязи	2	
26	Решение задач на расчет основных характеристик волны	1	
27	Контрольная работа№3 «Колебания и волны», коррекция	1	
	ОПТИКА	13	
	Световые волны	7	
28	Введение в оптику. Развитие взглядов на природу света. Скорость света.	1	
29	Основные законы геометрической оптики	1	
	Лабораторная работа№4 «Экспериментальное измерение показателя преломления	1	
30	стекла»		
	Лабораторная работа№5 «Экспериментальное определение оптической силы и	1	
31	фокусного расстояния собирающей линзы»		
32	Дисперсия света	1	
33	Лабораторная работа№6 «Измерение длины световой волны «	1	
	Лабораторная работа№7 «Наблюдение интерференции, дифракции и поляризации света»	1	
34			
	ЭЛЕМЕНТЫ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ	3	
35	Элементы специальной теории относительности. Постулаты Эйнштейна	1	
36	Элементы релятивистской динамики	1	
	Обобщающе-повторительное занятие по теме «Элементы специальной теории		
37	относительности»	1	
	Излучение и спектры	3	
	Излучение и спектры. Шкала электромагнитных излучений		

30	Решение задач по теме «Излучение и спектры» с выполнением лабораторной работы №8 « Наблюдение сплошного и линейчатого спектров »		
	Контрольная работа№4«Оптика», коррекция	1	
	КВАНТОВАЯ ФИЗИКА	13	
	Световые кванты	3	
41	Законы фотоэффекта. Гипотеза Планка о квантах. Фотоэффект.	1	
42	Фотоны. Гипотеза де Бройля	1	
43	Квантовые свойства света: световое давление, химическое действие света	1	
	Атомная физика	3	
44	Квантовые постулаты Бора. Излучение и поглощение света атомом	1	
45	Лазеры	1	
46	Контрольная работа№5 «Световые кванты», «Атомная физика», коррекция	1	
	Физика атомного ядра. Элементарные частицы	7	
47	Лабораторной работы №9 «Изучение треков заряженных частиц по готовым фотографиям»	1	
48	Радиоактивность	1	
49	Энергия связи атомных ядер	1	
50	Цепная ядерная реакция. Атомная электростанция	1	
51	Применение физики ядра на практике. Биологическое действие радиоактивных излучений	1	
52	Элементарные частицы	1	
53	Контрольная работа№6 «Физика ядра и элементы ФЭЧ», коррекция ЗНАЧЕНИЕ ФИЗИКИ ДЛЯ РАЗВИТИЯ МИРА И РАЗВИТИЯ ПРОИЗВОДИТЕЛЬНЫХ СИЛ ОБЩЕСТВА	1	
54	Основные элементы физической картины мира.	1	
	СТРОЕНИЕ И ЭВОЛЮЦИЯ ВСЕЛЕННОЙ	9	
55	Небесная сфера. Звездное небо	1	

57	Строение Солнечной системы. Современное представление о происхождении и эволюции солнца и звезд.	1	
	Система Земля — Луна	1	
59	Общие сведения о Солнце, его источники энергии и внутреннее строение	1	
60	Физическая природа звезд	1	
61	Галактика	1	
62	Происхождение и эволюция галактик. Красное смещение	1	
63	Жизнь и разум во Вселенной	1	
	Повторение	5	
64	Механика Кинематика Динамика	1	
65	Законы сохранения в механике	1	
66	Молекулярная физика Основы термодинамики	1	
67	Основы электродинамики	1	
68	Колебания и волны. Оптика Квантовая физика	1	